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Computer simulation study of plane rotators 
on a three dimensional lattice 

by S. ROMANO 
Dipartimento di Fisica ‘A. Volta’ and Unita INFM/GNSM-CNR/CISM Universita di 

Pavia, via A. Bassi 6 1-27100 Pavia, Italy 

(Received 3 December 1991; accepted 16 April 1992) 

We have considered a classical system, consisting oftwo component unit vectors 
(plane rotators) associated with a three dimensional, simple cubic lattice, and 
interacting via the nearest neighbour pair potential 

W, = CE cos (m(q5j - &)), c = f 1, 

where m is a positive integer, E is a positive constant setting the temperature and 
energy scales, and (q5k} are the angles defining the orientation of the plane rotators 
in an arbitrary reference frame (which can be identified with the lattice frame). The 
two potential models W, and - W, possess essentially the same properties in the 
absence of an external field (spin-flip symmetry); moreover, all of the potential 
models W, have the same partition function, and several mean values can be defined 
in a way which is independent of m. This model is known rigorously to possess a low 
temperature ordering transition, extensively simulated in the magnetic language 
(m = 1); we examined here the nematic interpretation (c = - 1, m = 2), and compare 
with molecular field and two site cluster predictions; we have also investigated 
director fluctuations. 

1. Introduction 
This paper reports computer simulation results for a certain classical lattice spin 

system already extensively studied in the literature as a magnetic model; because of the 
underlying symmetry, it can also, and equally well, be interpreted and investigated as a 
nematogenic lattice model, i.e. the plane rotator counterpart of the well-known 
Lebwohl-Lasher model. We consider here a system consisting of two component unit 
vectors (planar rotators) { u k }  associated with a d dimensional lattice Zd;  let x k  denote 
their coordinates, and let u j k  be their translationally invariant pair potential, restricted 
to nearest neighbours, and having the general form, anisotropic in spin space 

Here E is a quantity setting the energy and temperature scales (i.e. T* = kgT/E), and u j , n  

denote the Cartesian components of the unit vectors, which can be expressed in terms of 
polar angles { 4 k } ;  when a = b the interaction is isotropic in spin space. Without any loss 
of generality, the reference axes in spin space can be identified with lattice axes. There 
exist two important symmetry properties for potential models of this kind. 

(i) Spin-flip symmetry for a bipartite lattice: for any x k ,  a site parity (Tk = f 1 can be 
defined, depending on the sum of its d coordinates being even or odd; the lattice 
consists of two disjoint (even and odd) sublattices, and each node is surrounded 
by nearest neighbours belonging to the other sublattice, then next nearest 
neighbours belonging to its own, and so on. In the absence of an external field, 
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642 S. Romano 

the two potential models defined by c= - 1 and c = + 1, respectively, have the 
same partition function and essentially the same structural properties. 

(ii) We rewrite the pair potential in the slightly more general form 

W, = E(U cos (rn4j) cos (m4k) + b sin (rn4j) sin (nu$,’)), Vrn 2 1, (3) 
where rn is an arbitrary positive integer; it can easily be checked that [l, 23, for 
given values of a and b, all of the potential models W, give the same partition 
function, and also structural properties can be defined in a way which is 
independent of rn, and actually calculated using any convenient choice. 

There are, in addition, a number of rigorous results connecting dimensionality, 
anisotropy, and existence or absence of an ordering transition [3,4] for such systems. 
Thus when d = 1, the system is known to disorder at all finite temperatures; when d = 2 
and a # b an ordering transition is known to exist [3], whereas the system disorders at 
all finite temperatures in the isotropic case a = b, but possesses a transition to a low 
temperature phase with slow decay of correlations and infinite susceptibility 
(Kosterlitz-Thouless transition [4]); when d = 3, even the isotropic model can produce 
an ordering transition [3]. The nematic counterpart of the Kosterlitz-Thouless 
transition in two dimensions has also been investigated by renormalization group 
theory [5] and by simulation [6]. 

On a bipartite lattice, the interaction potential (and hence the ordered phase) can 
thus be interpreted in various ways, for example as ferro- or antiferromagnetic (rn = l), 
nematic or antinematic (m = 2); we consider the isotropic case on a three dimensional 
cubic lattice, extensively studied [7-121 in the (ferro)magnetic interpretation, and 
report here Monte Carlo simulation results for the nematic interpretation; the potential 
model which we have actually simulated is therefore 

u = ujk = - & cos (2(4j- 4 k ) ) .  (4) 
In order to clarify and qualify the relevance of eqn. (4) as an extreme nematogenic 
model, let us consider a system consisting of three component unit vectors associated 
with a three dimensional (or, in general, d dimensional lattice) and interacting via the 
hamiltonian (Lebwohl-Lasher model in an external field) 

where C(j<k) is restricted to nearest neighbouring pairs, and { d k ,  &} denote the polar 
angles defining the orientations of the unit vectors; the quantity G has the form 
G = - F’Ax, where F is an electric or magnetic field, and Ax is the anisotropy of the 
corresponding polarizability or susceptibility tensor. The system has been extensively 
studies by mean field theory (see, for example, [13,14]), and in some cases by simulation 
[l5, 161; it is predicted to exhibit critical points, both for G <O and G>O, although for 
values of the external field which appear to be unmeasurably large. In the limit G+ 
+ co, we effectively have sin d k  = 1, V k ,  and the right hand side of equation (5) reduces to 
(1/4)Z(j<k1(3Ujk - l), i.e.to the pair potential in equation (4), apart from a numerical 
factor. 

2. Computer simulations 
Calculations were carried out on a cubic lattice, using periodic boundary 

conditions, and different sample sizes ( N  = n3, n = 12,14,16). Equilibration runs took 
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Plane rotators on a three dimensional lattice 643 

5000 cycles (where one cycle or sweep corresponds to N attempted moves), and 
production runs took between 10 000 and 25 000; subaverages for calculating statistical 
errors were calculated over macrosteps consisting of 250 cycles. Calculated quantities 
include the potential energy, configurational heat capacity, second and fourth rank 
ordering tensor and associated order parameters ( T2 and T4); orientational correlation 
functions and singlet orientational distribution function were calculated at selected 
temperatures. We also investigated director fluctuations, as explained later; director 
pinning has been reported in the literature for some cases [17-191, and significant 
fluctuations were observed in others [19]. 

The second and fourth rank order parameters T2 and T4 are defined by [6] 

T~ = (cos (2e)), T~ = (COS (4e)), (6) 
where 8 is the angle between the individual molecule and the director, and were 
calculated as discussed in detail elsewhere [6,20-22]; we recall there that, for each 
macrostep, we calculated both the second rank tensor 

and its fourth rank counterpart; Q,, is then diagonalized to obtain its eigenvalues 
{ q l , q 2 } ,  where q1+q2=0 ,  and eigenvectors {v1,v2}. Let now q3=Iql( ,  let ij1,ij2,ij3 
denote their averages over all macrosteps, and let q4 = lG1l; for each macrostep j the 
eigenvector w i  associated with the positive eigenvalue defines the director orientation 
in the laboratory frame. In the ordered region, the orientation of wj was found to be 
stable over a few macrosteps. Owing to director fluctuations, q3 and q4 do not coincide, 
and we took q3 to define the order parameter T’; this definition was found to be 
consistent with the asymptotic limit of the correlation function G2(r), and overestimates 
finite size order in the disordered region, where the director is loosely defined [2@23]. 
We also defined the angle 

(8) 

i.e. the angle between the directors of two consecutive macrosteps, and calculated both 
its average I,Z and its maximum value $,,,ax. 

Correlation functions are defined by 

ijj = arccos ( Iwj.  oj+ 11), 

G Z L ( r ) = ( ~ ~ ~ ( 2 L ( q 5 j - q 5 k ) ) )  as functions of r=Ixj-xkl, L= 1,2 (9) 
and were calculated at selected temperatures, by analysing one configuration every 
two sweeps; their plots (not reported here) show a regular and monotonic decay to a 
limiting value consistent with the corresponding order parameter, i.e. 

lim GZL(r) = T;L. 
r -  m 

The singlet orientational distribution function was calculated at T* = 2.16, as 
reported elsewhere [23]; it is an even function of cos (O), and can be expanded as [20] 

or 

where the angle 0 can be restricted between 0 and 4 2 ,  and the quantities a2k are even 
rank order parameters. 
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3. Results and discussion 
Results for the heat capacity are shown in figure 1; those for the order parameters 

are shown in figure 2, and show a pronounced sample size effect at and above the 
transition temperature. A number of results are known in the literature for this model, 
obtained by various techniques, such as the analysis of the high temperature series for 
the partition function [7,8], renormalization group [9, lo], and extensive simulations 
[ l l ,  121: the system exhibits a second order transition [7,8,11,12] at T,* = 2.203 
f 0.006, whose critical exponents [24] have been calculated; for example B= 0.36 
f0.01 and v=0*67+0.02. Using finite size scaling (see, for example, [12]), we have 
obtained similar values for the critical exponents, and the estimate T,* = 2.215 f0.009 
for the transition temperature. Molecular field theory [25] predicts T:,,= 3 and 
BMF= 1/2 [25]; molecular field approach can be refined via cluster variational 
techniques [26-291; we have used a two site cluster treatment [28,29], and obtained 
T: TS = 2.034. 

For comparison, we also mention that, allowing for the symmetries discussed 
previously, the present model possesses various counterparts consisting of three 
component unit vectors, also associated with a simple cubiclattice: the 'magnetic' one is 
the classical Heisenberg model, with a transition temperature T,* = 1.4432 f 0.0002 

3 

2 

C"/kt3 

1 

C 

0 

f, 

I I I 

2.2 d 

T' 
4 

Figure 1. Configurational specific heat: (a) (0): fluctuation quantities, n = 12; (b) (0): 
fluctuation quantities, n = 14; (c) (A): fluctuation quantities with error bars, n = 16; (d)  (0): 
estimate obtained via least squares fitting and numerical differentiation of the potential 
energy. 
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Figure 2. Order parameters: (a) (0): T,, n = 12; (b) (0): T', n = 14; (c) (A): T,, n = 16; ( d )  (0): T4; 

the different sample sizes given the same results to within the associated statistical errors. 

[30], and the nematic one is the well-known Lebwohl-Lasher model, with TF = 1.1232 
f 0.0006 [22]; a three component antinematic counterpart, defined by the nearest 
neighbour potential 

U=&PZ(Uj' u/J, (13) 
has also been studied in the literature [31] and its transition temperature is estimated to 
be T,* = 0.66 f 0.04. 

As for the singlet orientational distribution function (see figure 3), a few order 
parameters were calculated both from the original histogram and by a linear least 
square fit (see equation (1 1)); we found 

a, = 0.374 f 0.003, 

a4 = 0.059 f 0.004, 

a6 = 0005 f 0.002, 

a8 = 0.0005 f 0.002. 

The quantities a, and a4 are in good agreement with the order parameters T, =0.369 
fO.005 and T4=0.055f0-004 obtained via the ordering tensors, and with far richer 
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Figure 3. Results for the singlet orientational distribution function at T* = 2.16: (a) (0): 

simulation results; (b) (-- -): least squares fit obtained from equation (12), by truncating 
the series at k =  1. 

statistics. We also .determined some of the fitting parameters in equation (12) 
numerically: truncation at k = 1 gives b, = 0.793 and produces a reasonable agreement 
with the simulation results; inclusion of the next term b, improves the agreement and 
makes calculated and simulation results coincide to within the symbol size. On the 
other hand, molecular field theory predicts [25] b,, = 0, k > 1 and b, = 6T2/T*, which 
gives 1.027 in this case; the ratio between the two values of b, is 0.772, close to the value 
TF/T$,=0.734; comparison shows that, as often, molecular field theory works in a 
qualitative way. 

Results for $and $,,, and for the two sample sizes n= 12 and n = 16 are reported in 
figure 4; for each quantity, results for n= 14 fall in between, and were not reported for 
the sake of clarity. Both quantities show a rapid increase at the transition temperature, 
and mostly decrease with increasing sample size; the mean values $are affected by large 
fluctuations (of their same order of magnitude), as can be inferred from the fact that 
$,,,may well be three times larger than $. In their Monte Carlo study of the Lebwohl- 
Lasher model, Luckhurst and Simpson [ 191 found significant director fluctuations 
when n = 10 and director pinning when n = 20; comparison with their results suggests 
two points. On the one hand, our director fluctuations may be larger because of a 
smaller number of angular variables being involved in our simulation and on the other 
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Figure 4. Director fluctuations: (a) (A): $, n = 12; (b) (0): $, n = 16; (c) (0): $,,,, n.= 12; (d) (0): 

$,ax, n= 16. 

hand, larger director fluctuations are also consistent with the second order character of 
the disordering transition, as opposed to the weak first order character of the Lebwhol- 
Lasher model. 

The present calculations were carried out on, among other machines, a cluster of 
VAX computers, belonging to the Sezione di Pavia of Istituto Nazionale di Fisica 
Nucleare (INFN); computer time on a CRAY machine was allocated by the Italian 
Consiglio Nazionale delle Ricerche (CNR). The author wishes to thank Professor G. R. 
Luckhurst (Department of Chemistry, University of Southampton) for helpful 
discussion and suggestions. 
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